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Abstract. Current benchmarking methods for measuring progress towards applications on quantum

computers often lack scalability and specificity. This limits their ability to produce generalizable metrics of

processor performance. Here, we describe a method for creating scalable application-specific benchmarks

using mirrored subcircuits that quantify a device’s ability to execute particular subroutines or entire algo-

rithms. We then apply this method to two quantum chemistry subroutines, performing noisy numerical

simulations and interpreting their results within the paradigm of volumetric benchmarking. We show how

to extract effective error rates and predict full circuit fidelities from the subcircuit data and demonstrate

that we can distinguish differences in performance resulting from structural properties of the circuits.

1. Introduction. Quantum processors promise to revolutionize computing, possessing
the ability to solve problems that are intractable on classical computers. Significant devel-
opments have been made in creating algorithms that may soon realize useful applications of
quantum computing. Yet, the most interesting applications of quantum devices are stalled
by complex and hard-to-predict hardware errors present in them. Many protocols have been
developed to characterize such errors and evaluate the performance of quantum processors.
Tomographic approaches such as gate set tomography (GST) [3] produce detailed models
of device noise, but are currently not scalable beyond a few qubits. Other methods, such as
randomized benchmarking (RB) [19] or IBM’s quantum volume benchmark [5], scale to at
least a reasonable number of qubits, but provide high-level metrics of device performance
that are not indicative of how well a device can execute real-world tasks. Novel bench-
marking methods that reconcile scalability with the ability to provide tailored performance
metrics are needed to better measure the capability of quantum devices.

As modern quantum processors approach the size necessary for small but potentially
useful applications, there is growing interest in application-specific benchmarks that probe a
device’s performance on a particular algorithm. Most current methods choose a set of one or
more tasks to create a benchmarking suite, aiming to capture especially common or relevant
programmatic structures that reflect realistic computations [1, 6, 7, 9, 12, 13, 14, 15]. Other
recent works have presented frameworks for creating application-specific benchmarks for
arbitrary applications, known as benchmark generators [8, 11]. Benchmarks created using
these methods rely on either exponentially scaling classical simulation of the benchmarking
circuits, exploitation of some problem-specific property that allows one to construct easily
predictable circuits, or some other application-specific strategy for quantifying the quality
of the benchmarking circuit outcomes. Scalable benchmarks can only be created using these
frameworks if one implements a clever circuit construction or outcome verification strategy,
detracting from the generality these methods aim to provide.

Here, we introduce a method for creating scalable volumetric benchmarks for almost any
algorithm. From an application circuit, we sample a set of subcircuits of varying widths and
depths that is representative of the full circuit. We then estimate the subcircuit fidelities
using mirror circuit fidelity estimation (MCFE) [18], which provides an efficient, generaliz-
able method for characterizing the performance of the subcircuits, resulting in application-
agnostic scalability. We apply this method to two quantum chemistry application circuits
and show how subcircuit fidelities can be used as a proxy for full circuit performance using
effective error rates. After establishing the efficacy of these error rates, we demonstrate
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that our benchmark is able to reveal performance differences between the two algorithms
resulting from structural properties of the circuits.

2. Benchmark Generation. In this section we describe our method for generating
application-specific benchmarks. Starting from an application-circuit C̃, we first pass the
circuit through a minimal compilation procedure, which maps the circuit to our target
device’s qubit graph containing only one- and two-qubit gates. The mapped circuit, written
as a composition of wC-qubit layers C = LdC · · ·L1, is passed to one of our subcircuit
selection routines, described in Section 2.1, producing a set {SC} of subcircuits with varying,
user-defined shapes. The subcircuits are then mirrored resulting in a set of mirror circuits
{MC} to run on the target device, after which we use mirror circuit fidelity estimation
(MCFE) to quantify the performance of the subcircuits, as described in Section 2.2.

2.1. Subcircuit Selection. The goal of subcircuit selection is to generate a set of
subcircuits that are representative of the full circuit. The primary difficulty in this task
is the presence of two-qubit gates, since one cannot simply choose any range of circuit
layers and subset of qubits without producing dangling gates — two-qubit gates where one
qubit is in the selected subset and the other is not. In our simple method (Section 2.1.1),
we choose to drop dangling gates from the subcircuit, whereas our connected components
method (Section 2.1.2) avoids dangling gates entirely. In both cases, the user defines a set
of subcircuit shapes (i.e., width-depth pairs) and chooses how many subcircuits to sample
for each shape.

2.1.1. Simple Method. In our simple selection method, we pick subcircuits itera-
tively over all the width-depth pairs until the desired number of subcircuits is reached. To
pick a subcircuit of width w and depth1 d, we first generate the set of all connected sub-
graphs of w qubits on which the circuit is mapped. A starting layer Li is chosen uniformly
from the set of allowable starting layers {L1, . . . , LdC�d} along with a subset of w connected
qubits. Layers are added until the target depth is reached, dropping and counting dangling
gates. While this method works well for small full circuit and subcircuit sizes, the genera-
tion of the connected qubit subgraphs is combinatorially difficult, limiting its use for circuits
using more than a few dozen qubits. The restriction of uniformly sampling connected qubit
subgraphs can be lifted to remove this computational bottleneck, but this was not explored
in the current work.

2.1.2. Connected Components Method. In the connected components method, we
consider each possible starting layer Li, and partition the qubits into disjoint subsets that are
not connected by a two-qubit gate. From the starting layer, we iterate over subsequent layers,
unioning subsets when a two-qubit gate is found that connects them. Concurrently, we track
the depth of each subset, ensuring that “inactive” layers (i.e., layers without operations on
the chosen subset) are not counted. Whenever a w-qubit subset with depth d where (w, d) is
a desired shape is found, we record the layers and qubits as a potential subcircuit, since we
might find more subcircuits than desired. After our search is finished, we choose a random
subset of the subcircuit options from each shape as our final set of subcircuits. In contrast to
the simple method, this process is computationally efficient, but it does not always result in
a sufficient number of subcircuits. Optionally, we can sample wider subcircuits by combining
parallel subcircuits on disjoint sets of qubits or deeper subcircuits by dropping qubits from
high-depth, high-width subcicuits, but even these steps do not guarantee the necessary
number of subcircuits.

1
For our purposes, we take depth to mean the physical depth, or how many unit-time ‘cycles’ the circuit

takes to execute on the target device.
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2.2. Mirror Circuit Fidelity Estimation. Here, we provide a brief overview of cir-
cuit mirroring [17], which underpins both mirror randomized benchmarking (RB) [19], a
variant of RB that can scale to hundreds of qubits, as well as the mirror circuit fidelity
estimation (MCFE) [18] technique that we will use to probe the performance of each subcir-
cuit. Circuit mirroring is based on the simple idea that an error-free quantum circuit should
be perfectly reversible, i.e. running the circuit forwards and backwards should return the
system back to the initial state. Therefore, any deviation from the initial state must be due
to errors in the circuit. If the initial state is known or easy to prepare, then one can directly
measure this deviation and thus how noisy the circuit execution was. However, running the
“mirrored” (i.e. combined forward and backward) circuit by itself is known as the Loschmidt
echo, and is not sufficient to capture all the errors in the system. Thus, the version of cir-
cuit mirroring in MCFE uses three additional features: i) randomized compiling to twirl
coherent errors and ensure they do not systematically cancel, ii) using ensembles of local
random initial states with classical postprocessing to avoid needing complicated n-qubit ini-
tial states, and iii) reference experiments to correct for state preparation and measurement
(SPAM) errors.

Calculating the fidelity of subcircuits with MCFE has several advantages that make it
useful for creating application-inspired benchmarks. Firstly, it captures both stochastic and
coherent errors. This is particularly important in the case of algorithmic circuits, which
have more structure than the random circuits used in many other benchmarks and may
interact with coherent errors in nontrivial ways. Secondly, it is a scalable technique due to
the localized nature of both the random states and the randomized compilation, making the
classical processing of the circuits to only scale linearly with number of circuit locations.
This allows for the fidelity of even large subcircuits to be estimated efficiently using MCFE.

3. Quantum Chemistry Applications. Quantum chemistry has been identified as
one possible “killer app” for quantum computing [20], and as such there has been much
effort in developing quantum algorithms for chemistry and materials science in recent years.
One common use case is ground state energy estimation, where the ground state of some
molecular Hamiltonian is prepared on the quantum computer and quantum phase estimation
(QPE) is used to read off the corresponding energy. It is usually the case that the ground
state can only be prepared approximately with some overlap � to the true ground state.
Since QPE only has a chance to project onto the true ground state proportional to �2, it
is often worth trying to improve this overlap. In fact, recent resource estimates show that
even though accurate state preparation can be expensive, it is almost always worth doing
in realistic scenarios [16].

Specifically, the quantum chemistry problem under consideration is the non-relativistic
Born-Oppenheimer electronic Hamiltonian given by:

H = �
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where ij index Ne electrons with positions r, a indexes NA nuclei with atomic charge ⇠ and
position R, and k·k denotes the 2-norm. The three terms in the sum are the kinetic energy
of the electrons, the nuclear-electron attraction, and the electron-electron repulsion, often
denoted T , U , and V , respectively. Working with the Hamiltonian in this form is known
as first quantization, and the natural parameters to express the wavefunction in are the
positions and momenta of the electrons.

However, one can also introduce a basis set (often Gaussians for molecules and planewaves
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for materials) and express the Hamiltonian in second quantization instead:

H =
NorbX

ij

hija
†
iaj +

NorbX

ijkl

gijkla
†
ia

†
jakal. (3.2)

In this formulation, ijkl index Norb molecular orbitals constructed from the basis set, a†
(a) are creation (annihilation) operators, and the hij and gijkl coefficients are precomputed
as integrals of the T , U , and V terms from Eqn. (3.1) over the molecular orbitals. The
convenience of second quantization is that now the natural parameters of the wavefunction
are simply the coefficients of the molecular orbitals.

As we will showcase below, the state preparation circuits for first-quantized and second-
quantized algorithms can differ in structure significantly. We would like to use application-
inspired benchmarks to compare the performance of state preparation circuits in these two
competing approaches.

3.1. Antisymmetrization for First-Quantized State Preparation. Recent work [21]
has shown that fault-tolerant first-quantized algorithms can scale better than second-quantized
algorithms. This is primarily due to the fact that there are often many more molecular or-
bitals needed in second-quantized approaches than there are actual electrons. However, one
downside to moving to first quantization is that the trial state now must be explicitly an-
tisymmetrized. As this is a major difference between first-quantized and second-quantized
state preparation, we will focus on building a benchmark for the antisymmetrization circuit.

Antisymmetrization can be done efficiently on a quantum computer [2] with four steps:
1. Prepare an auxiliary register in an even superposition of all possible strings of the

target length.
2. Sort this auxiliary register and store the outcome of each comparison.
3. Delete any collisions from the auxiliary register.
4. Apply the reverse of the sort to the target register.

The core routine of the antisymmetrization circuit is the sort, which must be done using a
sorting network. An example sorting network is shown in Fig. 3.1 and consists of many (po-
tentially parallel) comparator operations performing inequality tests and controlled-SWAPs.

Fig. 3.1. Example bitonic sort on 8 inputs, which is a major component of the antisymmetrization
circuit. Reproduced from [2].

3.2. Block-Encoded Hamiltonians for Second-Quantized State Preparation.
Unlike the first-quantized approach above, the antisymmetrization of the wavefunction in
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second quantization is handled by ensuring the proper anticommutation relations of the
ladder operators in Eqn. (3.2). Instead, we only have to worry about preparing an accurate
trial wavefunction. While there are many strategies for second-quantized state preparation,
we will focus here on the near-optimal filter-based approach from Lin and Tong [10]. The
key component in the filter-based state preparation approach is “block encoding” of the
Hamiltonian in Eqn. (3.2), which we will implement using the linear combination of unitaries
(LCU) approach [4]. The LCU approach generally consists of performing controlled rotations
to set the hij and gijkl coefficients in a “selection” register, performing multicontrolled
operations controlled by the selection register, and then unsetting the selection register. An
example circuit for the H2 molecule can be found in Fig. 3.2.

Fig. 3.2. Exemplar LCU circuit for the tapered H2 molecular Hamiltonian.

Unlike the bitonic sort in Fig. 3.1, one can see that the block-encoded Hamiltonian
contains significantly more multicontrolled operations and uses the qubit registers much
more inhomonogeneously, i.e. there is a clear distinction between the selection register
which act as controls and the system register which act as targets.

4. Results and Discussion. In this section, we present numerically simulated results
of our benchmarks created for 11-qubit antisymmetrization (ASym) and LCU circuits. Both
benchmarks were created using Nsc = 300 subcircuits per width-depth pair for each width
from 2 to 11 and exponentially increasing depths from 2 to 512, excluding widths 8 through
11 for the 512 depth. We used 100 mirror samples per subcircuit and 100 reference circuits for
each width. The mirror circuits were simulated using a noise model with one- and two-qubit
Hamiltonian and stochastic error generators. The coefficients of the error generators were
sampled uniformly from 0 to a maximum strength varied by the error type. The strengths
used for the one- and two-qubit Hamiltonian generators were 0.005 and 0.01, respectively,
while those for the stochastic error generators were 0.002 and 0.004 for one- and two-qubits.

Figures 4.1(a) and (b) show the mean subcircuit fidelities by subcircuit shape for the
ASym and LCU benchmarks. The fidelity serves as an indicator of the circuit’s performance,
where a circuit executed perfectly will have a fidelity of 1.0, decreasing towards 0.0 as the
circuit is executed less faithfully. As the width and depth of the subcircuits approach the
width and depth of the full circuit, we expect that the process fidelity of the subcircuits
approaches that of the full circuit. Looking to the volumetric benchmarking (VB) plots,
we see that the subcircuit fidelities decrease with increasing size in both benchmarks, as we
would expect since larger circuits admit more opportunities for errors to occur. Perhaps the
more interesting quality of the plots is whether they reveal differing performance between
the two algorithms. Figure 4.1(c) shows the difference between the mean subcircuit fidelities
of the two benchmarks, from which we observe that the ASym mirror circuits were executed
more faithfully than the LCU ones, with the difference becoming increasingly apparent at
larger circuit sizes. The greater prominence of the performance differences are likely due
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Fig. 4.1. Mean mirror circuit process fidelities by width and physical depth for ASym and LCU
benchmarks and difference between mean fidelities between ASym and LCU. (a)-(c) use raw fidelities,
whereas (d)-(f) use density-adjusted fidelities (denoted Adj.).

to larger subcircuits capturing more of the structure of the parent circuit, whereas smaller
subcircuits are relatively indistinguishable from each other regardless of the circuit they were
chosen from. In particular, a 2 ⇥ 2 subcircuit may look similar whether sampled from the
ASym or LCU circuit, but a 7⇥ 512 subcircuit from one is unlikely to resemble a subcircuit
of the same shape from the other.

4.1. Density-adjusted fidelities. Although circuit structure is a plausible explana-
tion for the differences in the subcircuit fidelities between the two benchmarks, there are
other relevant factors to consider, namely the gate density of the subcircuits (i.e., the ratio
of the gate count to the circuit size). Generally, we would expect that, given two circuits
with the same shape and perfect idles but different gate densities, the denser circuit will
have a lower fidelity. In real systems, the two-qubit gate density is typically the driver of
infidelity since idle and one-qubit gate errors are often significant. As the idle gates are
perfect in our numerical simulations, we expect the density to impact the circuit fidelity.

Without accounting for the gate densities, then, we cannot attribute the differences in
fidelities between the types of subcircuits to solely structural properties. Moreover, the sub-
circuits are not guaranteed to have equal densities to their parent circuits, which impacts
how representative they are of the full circuit. Attempting to recover a density-agnostic
measure of circuit performance, we computed a density-adjusted fidelity Fadj for each sub-
circuit to estimate the fidelity of the subcircuit if it had a target density ⇠ rather than its
actual density ⇠sc. As a function of the subcircuit’s “raw” or unaltered fidelity Fraw, the
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density-adjusted fidelity is given by

Fadj = (Fraw)
⇠/⇠sc . (4.1)

Using these density-adjusted fidelities, we replicated the same VB plots as before, setting the
target density to ⇠ = 1/8 as a proxy for the average gate density of the two circuits, as shown
in Figs. 4.1(d)-(f). These density-adjusted plots exhibit similar performance differences to
those seen in the raw subcircuit fidelities, although slightly damped, indicating the original
performance differences were likely artificially amplified by, but not entirely due to, unequal
densities between subcircuits of the same shape.

4.2. Predicting full circuit fidelity from subcircuits. For our purposes, whether
raw or density-adjusted fidelities are a better metric of performance primarily depends on
which ones better align to full circuit performance. To test this, we used MCFE to measure
the process fidelity of the full ASym and LCU circuits. Then, we used the benchmarking
data to predict the fidelity of the respective full circuit using a simple error rate model,
where we assume that the fidelity FC of the full circuit C with size sC = wCdC can be
computed from an “effective” error rate "C by

FC = (1� "C)
sC . (4.2)

To predict FC from a set of w by d subcircuits, we first compute an estimator "̂wd of "C
defined as

"̂wd = 1�GM {Fwd,1, . . . , Fwd,n}
1/s , (4.3)

where s = wd is the size of the subcircuits, Fwd,i is the fidelity of the ith subcircuit out
of the Nsc subcircuits of the particular shape, and GM denotes the geometric mean. The
predicted fidelity F̂wd is then calculated analogously as

F̂wd = (1� "̂wd)
sC . (4.4)

We then tested this model with both the raw and density-adjusted fidelities as shown
in Figs. 4.2(a) and (b), respectively. In both figures, the error bars indicate the expected
range of fidelities calculated from the geometric standard deviation, which is given by

�GM = exp

vuut 1

Nsc

NscX

i=1

 
ln

F̂wd,i

F̂wd

!
, (4.5)

where F̂wd,i is the fidelity prediction based on the ith w by d subcircuit. The upper and
lower error bars are then given by F̂wd · �GM and F̂wd/�GM , respectively (analogous to
the arithmetic mean plus or minus the typical standard deviation). Since we wanted to
test how well the subcircuits could predict the full circuit fidelity independently for each
application, the target density used for computing the density-adjusted fidelities was set
to the respective densities of the full circuits rather than a common one. For the ASym
circuit, both the raw and density-adjusted fidelity predictions similarly tended toward the
measured full circuit fidelity, though the spread of predictions was generally smaller using the
density-adjusted fidelities as indicated by the error bars. For the LCU circuits, however, the
raw subcircuit fidelities resulted in significantly worse predictions than the density-adjusted
fidelities. The predictions using the raw fidelities did not result in an obvious consensus even
at large subcircuit sizes, while the predictions using the density-adjusted fidelities show a
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(a) Raw fidelities.
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(b) Density-adjusted fidelities.

Fig. 4.2. Full circuit fidelity predictions by subcircuit size (width ⇥ depth) for ASym (top) and LCU
(bottom) circuits. Predictions using raw fidelities are shown in (a) and those using density-adjusted fidelities
are shown in (b). Colors indicate width of subcircuits. Solid black line indicates actual full circuit fidelity.
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Fig. 4.3. Full circuit fidelity predictions for LCU ciruit by subcircuit size (width ⇥ depth) using ASym
subcircuit data. Predictions using raw fidelities are shown on the left and density-adjusted fidelities on the
right (target density set to LCU full circuit density). Colors indicate width of subcircuits. Solid black line
indicates actual LCU full circuit fidelity.

much clearer convergence towards the full circuit fidelity. Notably, the mean density of the
ASym subcircuits was within 0.5% of the full circuit density, while the mean density of the
LCU subcircuits was more than 11% greater than the full circuit density, explaining why the
raw ASym predictions worked relatively well whereas the raw LCU predictions were largely
inaccurate.

Paying particular attention to the effect of the subcircuit width on the accuracy of pre-
dictions, we observe that high-width subcircuits resulted in significantly better predictions
than those from low-width subcircuits of similar size, both in terms of the mean predicted
value and the spread of predictions. Such results coincide with the well-established phe-
nomenon that measured one- and two-qubit error rates — often used as metrics in periodic
device calibration — are poor predictors of real device performance.

4.3. Cross-predicting circuit performance. The relative efficacy of the subcir-
cuits in predicting the full circuit fidelities demonstrates that subcircuit fidelities, particular
density-adjusted ones, are a sufficient proxy for measuring the performance of the full cir-
cuit. However, one might consider whether they reveal authentic distinctions in a device’s
capability to run the full circuit due to structural differences in the circuits, or if the different
results are simply a consequence of unequal circuit depth and density. If the latter claim
were true, we would expect that, using our fidelity prediction model, we could predict the
full circuit fidelity of the LCU circuit from the ASym subcircuits, or vice versa. In hopes of
rejecting such a possibility, we attempted to do exactly this. Using ASym subcircuit fideli-
ties to find the effective error rate, we computed the same predictions as before, but using
the width, depth, and density (where applicable) of the LCU circuit, the results of which
are depicted in Fig. 4.3. Using both the raw and density-adjusted fidelities, we see that
the predictions do not converge to the full circuit fidelity, implying that we have identified
performance differences that cannot be attributed to superficial properties of the circuits.

From this attempt at cross-predicting circuit performance, Fig. 4.3 demonstrates that
the ASym data predict a greater fidelity than the LCU circuit actually has; that is, the full
circuit fidelity predictions tend towards 0.2 from the ASym data while the true LCU circuit
fidelity is closer to 0.15. More quantitatively, we can examine the differences in performance
by comparing the effective error rates between the two circuits, given in Table 4.1. For each
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Table 4.1
Actual ("C) and estimated ("̂raw and "̂adj) effective error rates for ASym and LCU circuits.

"C "̂raw "̂adj
ASym 1.163⇥ 10�4 1.213(276)⇥ 10�4 1.185(126)⇥ 10�4

LCU 1.561⇥ 10�4 1.731(350)⇥ 10�4 1.498(133)⇥ 10�4

Difference 3.98⇥ 10�5 5.66⇥ 10�5 3.61⇥ 10�5

circuit, the effective error rate was computed as

"C = 1� (FC)
1/sC , (4.6)

where sC is the size of the full circuit and FC is the fidelity estimate found using MCFE,
which we note is consistent with Eqn. (4.2). To estimate the error rate from the subcircuit
fidelities, we computed the error rate for each shape as in Eqn. (4.3) and then took a
simple average over those error rates, resulting in the estimated error rates "̂raw and "̂adj ,
corresponding to estimates using raw and density-adjusted fidelities. It is worth mentioning
that a more intelligent scheme could be used to average these error rates as we know that
higher width or higher size subcircuits generally yield for accurate predictions; however, a
simple arithmetic mean is used here to enable straighforward analysis and error bars.

The results in Table 4.1 coincide with much of what we have already seen in the fidelity
predictions, namely that estimates using subcircuit data produce close approximations for
the directly-measured full circuit error rates, with higher accuracy using the density-adjusted
fidelities. A novel result yields from comparing the error rates for the different circuits,
revealing significantly lower error rates for the ASym circuit. Notably, we find that the
estimated error rates from density-adjusted subcircuit fidelities closely mirror the actual
error rates, even in the relative difference between the two circuits, indicating that subcircuit
data can accurately quantify performance differences between application circuits.

5. Conclusions. In this work, we described a general method for creating scalable
benchmarks from any application circuit using mirrored subcircuits and applied it to two
quantum chemistry application circuits. We showed using simulated results that subcircuit
fidelities can accurately predict full circuit fidelities, giving credence to the notion of using
an effective error rate as a mechanism for comparing the performance of different circuits.
Crucially, we found that the fidelity predictions using subcircuit data are specific to the par-
ent circuit, even when accounting for properties such as the width, depth, and gate density,
indicating that our benchmarking scheme is able to distinguish differences in performance
resulting from structural properties of the circuits rather than superficial ones.

These results demonstrate that subcircuit techniques for benchmarking provide a scal-
able proxy for full circuit performance, but several open questions remain. Whether these
results can be replicated using a real device instead of a simulated noise model is still un-
clear. Moreover, our methods for subcircuit selection are imperfect, with the simple method
suffering from computational complexity and the connected components method failing to
guarantee a sufficient number of subcircuits. We also have yet to examine the differences
in results between subcircuit selection methods, which could have significant consequences
on how well a generated benchmark mirrors the performance of the application circuit and
how we interpret the benchmarking data. Even without regard to subcircuit selection meth-
ods, more work is needed to assess the resilience of our fidelity prediction and error rate
model, which currently lacks a strong analytical foundation. More sophisticated models
may provide more accurate results or allow us to bound the error on our predictions.
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